J Glob Optim (2010) 46:363-381
DOI 10.1007/s10898-009-9430-2

A hybrid heuristic for the diameter constrained
minimum spanning tree problem

Abilio Lucena - Celso C. Ribeiro - Andréa C. Santos

Received: 20 May 2008 / Accepted: 29 April 2009 / Published online: 22 May 2009
© Springer Science+Business Media, LLC. 2009

Abstract We propose a hybrid GRASP and ILS based heuristic for the diameter con-
strained minimum spanning tree problem. The latter typically models network design appli-
cations where, under a given quality requirement, all vertices must be connected at minimum
cost. An adaptation of the one time tree heuristic is used to build feasible diameter con-
strained spanning trees. Solutions thus obtained are then attempted to be improved through
local search. Four different neighborhoods are investigated, in a scheme similar to VND.
Upper bounds within 2% of optimality were obtained for problems in two test sets from the
literature. Additionally, upper bounds stronger than those previously obtained in the literature
are reported for OR-Library instances.

Keywords Spanning trees - Diameter constrained spanning trees - Heuristics - GRASP -
Iterated local search

1 Introduction

Let G = (V, E) be a connected undirected graph with a set V of vertices, a set E of edges,
and a cost ¢;; associated with every edge [i, j] € E. Considering 7 a spanning tree of G,
the diameter of 7 is equal to the number of edges in the longest path linking any two nodes
i,j € V,i # j.Given an integer parameter 2 < D < |V| — 1, the diameter constrained

A. Lucena
Federal University of Rio de Janeiro, Av. Pasteur 250, Rio de Janeiro, RJ 22290-240, Brazil
e-mail: lucena@facc.uftj.br

C. C. Ribeiro (X))

Institute of Computing, Federal University Fluminense, Rua Passo da Patria 156, Niter6i, RJ 24210-240,
Brazil

e-mail: celso@ic.uff.br; celso@inf.puc-rio.br

A. C. Santos

Blaise Pascal University, LIMOS, Complexe Scientifique des Cézeaux, 63173 Aubiere, France
e-mail: andrea@isima.fr

@ Springer

364 J Glob Optim (2010) 46:363-381

minimum spanning tree problem (DCMST) seeks a least cost spanning tree of G whose
diameter does not exceed D. DCMST was proved to be N P-hard when D > 4 [10] and has
been used as a model for applications in telecommunication [4,28], data compression [6],
and distributed mutual exclusion in parallel computing [7,27].

Several DCMST formulations are found in the literature. The very first ones were intro-
duced in [2,3] and use single commodity network flows to simultaneously impose solution
connectivity and diameter constraints. These formulations distinguish odd and even D cases
and variants of them are found in [3]. They are reinforced with valid inequalities and sub-
mitted to a lifting procedure in [31]. Formulations based on multi-commodity network flows
were suggested in [11, 12]. One of these formulations does not distinguish the odd and even D
cases, while the others do. The formulations in [11,12] produce tighter linear programming
(LP) relaxations than those previously obtained in the literature. However, these improved
bounds are attained at a considerable CPU time cost. More recently, new odd and even D
formulations were introduced and reinforced with valid inequalities in [14]. Proven optimal
solutions for complete graph instances with up to 25 vertices were obtained in [14,31] and
for sparse graph instances with up to 60 vertices and 600 edges in [12,13,31].

A number of heuristics for solving DCMST are found in the literature. The one time tree
(OTT) constructive heuristic, based on the Prim algorithm [25], and heuristics which itera-
tively refine a minimum spanning tree were suggested in [1]. A randomized greedy heuristic
(RGH) and a genetic algorithm were proposed in [26]. From the available computational
evidence, RGH performs better than OTT. Improved versions of the genetic algorithm are
described in [21,22]. A variable neighborhood search (VNS) heuristic is proposed in [15]
and this algorithm has been shown to perform better than the previous genetic algorithms.

A hybrid algorithm combining the principles of greedy randomized adaptive search
procedures (GRASP) [9,29] and iterated local search (ILS) [23] is proposed in this paper.
Hybridizations of the iterated local search metaheuristic with multistart approaches have been
successfully developed to a number of applications (see e.g., [8,16,30]) and they seem to be
a promising search strategy. Our algorithm was tested on three test sets from the literature.
The first set was suggested in [31], while the second originates from [12]. The third test set
was used in [14,15,21,26] and comes from the OR-Library [5]. Proven optimal solutions
are known for instances in the first and the second test sets and were used to evaluate the
quality of the solutions produced by the hybrid algorithm. For instances in these sets, the best
solution values obtained by the hybrid algorithm were always within 2% of the corresponding
optimal values. Additionally, for several instances in the third test set, new best upper bounds
were established.

This paper is organized as follows. GRASP and ILS metaheuristics are briefly reviewed
in Sect.2. In Sect. 3, the hybrid algorithm is described in detail. Computational results are
reported in Sect. 4. Finally, concluding remarks are drawn in Sect. 5.

2 GRASP and ILS

Metaheuristics are general high-level procedures that coordinate simple heuristics and rules
to find good approximate (often optimal) solutions to computationally difficult combinato-
rial optimization problems. Among them, we find simulated annealing, tabu search, GRASP,
ILS, genetic algorithms, ant colonies, and others. They are based on distinct paradigms and
offer different mechanisms to escape from locally optimal solutions. Metaheuristics have
been widely used in the literature to find good quality solutions to N P-hard problems. Addi-
tionally, they have recently been combined into hybrid heuristics that borrow ideas from two

@ Springer

J Glob Optim (2010) 46:363-381 365

or more metaheuristics. In particular, the hybrid algorithm proposed in this paper is based on
GRASP and ILS.

Greedy randomized adaptive search procedure is a multi-start metaheuristic which com-
bines a constructive phase with a local search procedure. The pseudo-code of a generic
GRASP algorithm is presented in Algorithm 1. A feasible solution is generated and sub-
mitted to a local search at every iteration. The best feasible solution obtained after a given
pre-specified number of iterations is returned as the output. As for ILS, it essentially applies,

Input: stopping criterion, seed
Output: S*

1 Initialize S*;

2 while (stopping criterion not met) do
3 S <« Construction (seed);

S <« Local search (S);

if S is better than S* then

| §* <

7 end

8 end

9 return S*;

A A

Algorithm 1: GRASP pseudo-code

at every iteration, perturbations to feasible solutions and the resulting perturbed solutions are
then submitted to a local search. A generic ILS pseudo-code is presented in Algorithm 2.
Initially, a feasible solution is generated and a local search is applied to it. After that, per-
turbation performing iterations, followed by local search, are successively implemented. In
this process, an acceptance criterion is used to determine, after carrying out a perturbation
and local search round, if the solution thus obtained is fit to become the new current solution.
The best overall solution thus obtained is returned as the output.

Input: stopping criterion
Output: S*
S < initial solution;
S <« Local search (S);
while (stopping criterion not met) do
S’ < Perturbation (S);
S’ < Local search (5');
if S’ is better than S* then
| §* <5
end
S < Acceptance criterion (S, SN
end
return S*;

o 0 1A AW -

— =
]

Algorithm 2: ILS pseudo-code

3 A hybrid DCMST heuristic

The main components of our hybrid algorithm are a fast constructive heuristic to generate
feasible solutions, local search procedures, and perturbation implementing procedures. The
algorithm follows the same general scheme adopted in [30]. Fast heuristics such as RGH,
OTT or a modified randomized version of OTT (OTT-M) could be used to generate initial

@ Springer

366 J Glob Optim (2010) 46:363-381

Fig. 1 A general view of the G(V.E)
hybrid algorithm stopping criterion
GRASP seed

‘ Constructive heuristic ‘

S

‘ Local search ‘
S

ILS

‘ Perturbation ‘

s’

‘ Local search ‘

s

‘ Acceptance criterion ‘

S*

solutions. They are described in Sect. 3.1 and compared in Sect.4.1. A semi-greedy (or greedy
randomized) heuristic, designed with the same purpose, is described in Sect. 3.2. In Sect. 3.3,
we present four different neighborhoods which are exploited in a scheme similar to variable
neighborhood descent (VND) [18,19]. Perturbations and filters are discussed respectively in
Sects. 3.4 and 3.5. An introductory general view of the hybrid algorithm is presented in Fig. 1.

The hybrid algorithm is initiated with the application of a constructive heuristic, such
as OTT-M. If the underlying graph is complete, the solution thus obtained is guaranteed to
be feasible and is accepted outright. However, for sparse graphs, no guarantee exists that a
feasible solution is returned. For such graphs, artificial edges with high costs are inserted into
the original graph to make them complete. If the number of artificial edges in the solution
returned by the constructive heuristic is large, the solution is rejected and the constructive
heuristic is called once again. This process is repeated until either a feasible solution is
obtained or else the number of artificial edges in the solution is considered as acceptable.

The feasible solution produced by the procedure outlined above is submitted to local
search. In turn, local search is followed by a pre-specified number of perturbation and
local search rounds to conclude an iteration of the hybrid algorithm. Within these rounds,
local search is only carried out for perturbed solutions that survive a given filter check, to be
described in Sect. 3.5.

Provided a stopping criterion has not been met, a new iteration of the hybrid algorithm is
initiated. In this process, the overall best feasible solution found by the algorithm is returned
as the output. In summary, for the hybrid algorithm, the local search phase of every GRASP
iteration is replaced by a ILS heuristic. Associated filters help to select feasible solutions that
are worthy spending time on.

3.1 Constructive heuristics

Greedy constructive heuristics expand feasible solutions, one element at a time, after eval-
uating the impact in the objective function of adding each possible element still missing in

@ Springer

J Glob Optim (2010) 46:363-381 367

the current partial solution under construction. In a minimization problem, for example, the
impact a variable has on entering the solution is evaluated by a function that estimates the
increase in objective function value. In doing so, and provided no infeasibility results, a can-
didate element with the best immediate recorded impact is selected to expand the incomplete
solution in hand.

The best constructive heuristics available to DCMST are OTT [1] and RGH [26]. Heuristic
OTT is based on Prim’s algorithm [25]. It is initialized with any single vertex in V. Being
somewhat lax with the notation, let us call that single vertex a (non spanning) tree 7 of G.
At each iteration of the algorithm, tree 7 is expanded with the introduction of a vertex in V
not yet included in 7. The chosen vertex is connected to 7 through a least cost edge that
does not create a cycle in that structure. In doing so, a check is made to prevent violations
of the diameter constraint: candidate edges that would lead to diameter violations are not
considered for the expansion of a (non spanning) tree 7 of G. The algorithm terminates
when all vertices in V' belong to the tree, which thus becomes a spanning tree for G. Since
the minimum-cost edge whose insertion does not create a cycle can be determined in time
O(|V|?), algorithm OTT runs in time O(|V|?) [1].

For the case of RGH [26], tree 7 is also initialized with a single vertex in V. At each
iteration, 7 is expanded through a randomly chosen node which is not yet in 7. This node is
connected to the tree via the smallest cost edge, satisfying the diameter constraint. Algorithm
RGH takes O(|V|?) time in the worst case.

Heuristic RGH performed better than OTT in the experiments reported in [26]. However,
it is important to highlight that there is no guarantee that either RGH or OTT will necessarily
return a feasible solution for sparse graphs instances.

3.2 Semi-greedy constructive heuristic OTT-M

At each iteration of a semi-greedy heuristic, good variables, but not necessarily the local best,
may eventually be selected to enter the expanding solution. A semi-greedy strategy to select
an entering variable, based on a restricted candidate list (RCL), is proposed in [20]. First,
a RCL is drawn and then the next entering element is randomly selected from it. Various
criteria, including the immediate impact on the objective function and an upper limit on the
number of elements allowed in the list, may be used in controlling the RCL size. Semi-greedy
heuristics are also referred to as greedy randomized heuristics, since they randomly select
one element from those in RCL.

We modified OTT by introducing a RCL to it. Such a list invokes the product of two
different criteria to select member vertices. The first one is the cost of the least cost edge that
connects a given vertex to a vertex in 7 (to attempt to induce low cost solutions). The second
is the cardinality of the largest path that results in 7, after insertion of that vertex (to attempt
to avoid diameter violations). A given candidate vertex is accepted into RCL if the product
of its two corresponding values is less than or equal to

Siim = fmin + & (finax — fmin)- (D

For Eq. 1, fmin and fmax give, respectively, the smallest and the largest corresponding prod-
ucts specified above, for all vertices currently outside 7. Parameter « is to assume a value in
[0,1]. If « is set to 0, a pure greedy minimization algorithm is implied, while « = 1 leads to
a completely random construction.

We have also implemented an on-line automatic adjustment of the value of « by following
the Reactive GRASP strategy suggested in [24]. Accordingly, let {1, a2, ..., o}, where

@ Springer

368 J Glob Optim (2010) 46:363-381

m > 1, be a set of discrete values with corresponding associated probabilities {p; : i =
1,..., m}. In our experiments, we fixed m to 10 andused o; = 0.1(i — 1), fori =1, ..., m.
The value of « is randomly chosen from that set to build a solution using the semi-greedy
constructive heuristic.

In relation with the discussion above, assume that probabilities {p; = 1/m : i =
1, ..., m} are initially taken. Assume as well that A; is the average value of the feasible solu-
tions obtained under the use of « = «; in Eq. 1. In order to penalize low probability values,
a dumping factor B > 0 is used. As a result, corresponding probabilities are computed as

m
Pi:‘Ii/Zst i=1,....m 2)
j=1

where
g =/A0P, i=1,....m. 3)

In doing so, values of « leading to better results will have a higher probability of being
selected. Probabilities p; were updated at every 100 iterations and we set § = 8 in the com-
putational experiments. Likewise OTT, the worst case complexity of OTT-M is O(|V|?).

3.3 Neighborhoods

Four different neighborhoods were investigated in our local search procedures. They are
denoted respectively by restricted 1-opt neighborhood, restricted 2-opt neighborhood, sub-
tree adoption neighborhood, and path exchange neighborhood. Accordingly, the local search
procedures are respectively identified by the names of the neighborhoods they exploit.

While implementing local search procedures, we use a property of feasible diameter con-
strained spanning trees. For even D, Handler [17] pointed out that a central vertexi € V
must exist in any diameter constrained tree 7 such that no other vertex in 7 is more than
D/2 edges away from i. Conversely, if D is odd, a central edge e = [i, j] € E must exist
in 7 such that no vertex in 7 is more than (D — 1)/2 edges away from its closest extremity
of [, j]. Thus, any diameter constrained tree we investigate either has an associated central
vertex or else a central edge, depending on D being even or odd. Furthermore, trees are
oriented, from their roots toward their leaves, in a father/sons structure. In doing so, a root
vertex of 7 is assumed to be hierarchically higher than any other vertex in the tree.

3.3.1 Restricted 1-opt neighborhood

Given a diameter constrained spanning tree 7 of G, the 1-opt neighborhood consists of all
solutions that can be obtained by exchanging, under certain conditions, one edge in 7 for
another not in 7. These conditions specify the way an edge is removed from 7 and how the
two resulting non spanning trees of G should be reconnected, to generate a new diameter
constrained tree.

Removing a given edge in 7 results in two (non spanning) trees of G. They are respec-
tively denoted primary tree (1) and secondary tree (7). Primary trees must necessarily
contain the central vertex of 7 in the even D case or the central edge of 7 in the odd D
case. Additionally, for odd D instances, we ensure that no central edge of 7 is ever selected
for removal. Edges that are candidates for reconnection of 7, and 75 must necessarily link a
vertex in 7, to the root vertex in 75. Among all candidate edges that do not result in violations

@ Springer

J Glob Optim (2010) 46:363-381 369

o3

Fig. 2 Example of a restricted (a)
1-opt neighborhood move a

(d)

of the diameter constraint, one with the least cost is selected for reconnection. A restricted
1-opt neighborhood move is accepted whenever the returned tree has a cost smaller than 7.
Such a move is depicted in Fig.2.

Figure 2a shows the diameter constrained tree 7 over which restricted 1-opt neighborhood
moves are to be performed. Figure 2b shows trees 7, and 7 that result from the removal of
edge [i, p] from 7. Candidate edges for reconnection of 7, and 7; are identified by dotted
lines in Fig.2c. Assume that [i, j] is the least cost reconnection edge that does not incur
in diameter constraint violations. The feasible tree that results from the suggested restricted
1-opt neighborhood move is shown in Fig. 2d.

The local search procedure we implemented to exploit restricted 1-opt neighborhoods
enforces that every candidate edge is removed, one at a time, from a feasible tree 7. The
resulting subtrees are reconnected through the least cost edge satisfying the diameter con-
straint. The first improving tree is then accepted as the new incumbent solution and the search
stops when no improvement is attained after investigating all possibilities involved. Since
O(|V]) edges could be removed from 7, and since reconnecting the resulting subtrees as
mentioned above involves O (] V) steps, examining all moves in each local search iteration
takes time O(]V|?) in the worst case.

3.3.2 Restricted 2-opt neighborhood

Given a diameter constrained spanning tree 7 of G, its associated restricted 2-opt neighbor-
hood is defined by the diameter constrained spanning trees of G that, under certain conditions,
are obtained after removing exactly two edges in 7. These conditions are associated with the
way the two edges are selected and the way the three resulting non spanning trees of G are
reconnected.

Removing two edges in 7 results in one primary tree and two secondary trees being
generated. Central edges must never be candidates for removal. Furthermore, the two sec-
ondary trees thus generated must necessarily be reconnected through an edge linking their
respective roots. Once the two secondary trees are reconnected, one is left with a primary tree
and a single secondary tree. Then, the restricted 1-opt neighborhood rules, defined above for
reconnection of a primary and a secondary tree are applied. A restricted 2-opt neighborhood
move for an even D instance is depicted in Fig. 3.

@ Springer

370 J Glob Optim (2010) 46:363-381

Fig. 3 Example of a restricted
2-opt neighborhood move (@)

r ®

Figure 3a shows the diameter constrained tree 7 to which restricted 2-opt neighborhood
moves will be applied. Figure 3b shows trees 7, and the two secondary trees 7; and 7, which
were obtained while removing edges [p, i] and [g, j] from 7. The two secondary trees 7
and 7] are reconnected through edge [7, j] (their respective roots) in Fig. 3c. Candidate edges
for reconnection of 7, and the new 7 are identified by dotted lines in Fig. 3d, e. Assume that
[/, k] is the least cost reconnection edge that does not incur in diameter constraint violations.
The feasible tree that results from the suggested restricted 2-opt neighborhood move is then
shown in Fig. 3f.

The local search using the 2-opt neighborhood updates the current solution when the
first improvement move is found, following a first-improvement search strategy. There are
0O(|V?]) possibilities to remove two edges in 7, and reconnecting each subtree takes time
O(|V|). Thus, the evaluation of all moves in each local search iteration runs in time O (|V3]).

3.3.3 Subtree adoption neighborhood

Given a diameter constrained tree 7, a non leaf vertex i of 7 must be selected to initiate a
subtree adoption neighborhood move. This vertex is required to have at least two children
and, once it is selected, the corresponding edge linking vertex i to its parent p in 7 must
be removed from the tree. Such action gives rise to a primary tree 7, and a secondary tree
7;. Denote by iy, ..., i, where [> 2, the children of vertex i in Z;. The subtree adoption
neighborhood consists of building a new secondary tree 7; having the same set of vertices as
T and such that one of the vertices in {iy, . .., i;}, say ik, will act as its root. In this process,
one is required to forcing i to become a leaf of the new secondary tree and every (sub)tree
having a vertexin {71, ..., i;}\ {ix} as root should be directly connected to ix. Furthermore, 7,

@ Springer

J Glob Optim (2010) 46:363-381 371

Fig. 4 Subtree adoption move

(@ ON (b) (®)
L @ ®» @

@ @& O (=)

(0 @ (d) ©
@ @ @

is reconnected to 75 by edge [p, ix]. Diameter constraint feasibility is maintained throughout
this process.

A subtree adoption move is accepted whenever the returned tree has a cost smaller than
7. The best move in the neighborhood is applied to the current solution, characterizing a
best-improvement search-strategy. There are O (|V]) nodes capable to participate of a sub-
tree adoption move. Computing the new secondary tree cost requires up to O(|V|) steps.
Therefore, each local search iteration takes time O (|V2|).

A subtree adoption move is shown in Fig.4. Tree 7 is shown in Fig.4a where i is the
vertex selected to implement the move. All possible roots for secondary trees are depicted in
Fig.4b to d, together with their corresponding associated subtrees.

3.3.4 Path exchange neighborhood

Given a diameter constrained tree 7, let 7, j, and k be the vertices that define a two edges
path, where j is a child of i and k is a child of j. A path exchange neighborhood is defined by
the diameter constrained trees of G obtained, under certain conditions, after removing edges
[i, jl1and [, k] from 7. A description of these conditions follows.

Neither edge [i, j] or [, k] may be a central edge of 7. Vertex i, however, is allowed to
be a central vertex of that tree. In turn, vertex j is requested to have at least two children.

After removing edges [i, j] and [, k] from 7, three (sub)trees of G result. One of them is
a primary tree, while the others are secondary ones. Assume that ji, ..., j;, where! > 2, are
the children of j, including k. The two secondary trees are then required to be reconnected
through an edge that links & to one of the vertices in {ji, ... ji} \ {k}, say vertex js. Either
vertex js or k should then be selected as root of the resulting secondary tree and be directly
linked to vertex i, in an attempt to obtain a diameter constrained tree of G. For the path
exchange move described above, only one diameter constraint feasibility test must be carried
out. This test is associated with the reconnection of the secondary tree rooted in j. That, in
turn, may bring about diameter constraint violations.

A subtree adoption move is accepted whenever the returned tree has a cost smaller than
7 and it does not violate the diameter constraint, thus characterizing a first-improvement
search strategy. Investigating all moves in a local search iteration takes O (|V|?) time.

@ Springer

372 J Glob Optim (2010) 46:363-381

Fig. 5 A path exchange move

@ 7 ® 5
L @ OWRO,
@ @& @ G @& @
© @ Q)
o @ O \@

Figure 5 illustrates a path exchange neighborhood move. Fig. 5a shows the initial diame-
ter constrained tree 7. Figure 5b indicates the removal path [i, j] and [, j»] from 7. Two
possibilities to reconnect the secondary subtrees are specified in Fig. 5c, d. In Fig. 5c, the new
path contains edges [7, ji] and [, j2], while in Fig. 5d, the new path contains edges [i, j3]
and [j3, j2].

3.4 Perturbations

Two types perturbations may be applied to the current solution in this study. They involve
the exchange of a central vertex when D is even or one extremity of the central edge when
D is odd.

Assume that trees are oriented, from their roots toward their leaves, in a parent/children
structure as in the local search procedures presented in Sect.3.3. Let 7 be a feasible ori-
ented diameter constrained tree of G. For the first perturbation, a child of the central vertex
becomes the new root of 7 when D is even, or a new extremity of the central edge when
D is odd. After this exchange, tree vertex levels must be adjusted accordingly. For even D
instances, under the exchange just suggested, vertices that are more than D/2 edges away
from the new root must be initially disconnected from 7. They should then be attempted to
be feasibly reconnected to 7', through a least cost edge criterion. Similar arrangements must
also be made for odd D instances.

The second perturbation consists of selecting randomly a vertex to act as the new central
vertex when D is even, or as a new extremity of the central edge when D is odd. In the odd
case, one of the extremities of the central edge is randomly chosen to be replaced and is called
here the old extremity. Afterwards, the former central vertex when D is even (resp. the old
extremity of the former central edge when D is odd) is attempted to be feasibly reconnected
to the resulting tree through a least cost criterion. These two perturbations are executed alter-
nately at every iteration of the hybrid algorithm, with the first perturbation being applied
first.

For each type of perturbation, a limit is imposed on the number of consecutive perturbation
rounds during the ILS phase of the hybrid algorithm. For the first type of perturbation, this
limit is equal to the degree of the central vertex when D is even (resp. degree of the replaced

@ Springer

J Glob Optim (2010) 46:363-381 373

extremity of the central edge when D is odd). For the second type of perturbation, up to
|V]/3 consecutive perturbation rounds are allowed. Local search is applied to the solution
obtained after the perturbation. The resulting solution replaces the incumbent as the new
current solution if its cost is better than that of the latter.

3.5 Filters

Two different filters are used in our hybrid algorithm. The first one is used in the constructive
phase of the procedure. As mentioned before, sparse graph instances are treated as if they
originate from complete graphs. This is accomplished by introducing missing edges into
the corresponding sparse graph, at a sufficiently high cost. However, in this case, the output
of the constructive heuristic may eventually contain artificial edges. If that is the case, we
would hope that such edges would be eliminated through the use of the local search proce-
dures. However, it was experimentally noticed that, after local search procedures are applied,
solutions containing a large number of artificial edges would frequently lead to infeasible
solutions or else to feasible solutions with a poor quality.

As a result, a filter is applied to impose a cutoff point for solutions to be submitted to
local search. Accordingly, only those solutions containing less than | V| /3 artificial edges are
submitted to local search. Rejected solutions are simply discarded and a new feasible solution
is then attempted to be built through OTT-M. The best solution is retained if no solution with
less than |V|/3 artificial edges is obtained after ten trials.

Another filter is applied immediately after the perturbations are carried out. As before,
the filter decides if the solution in hand is fit to be submitted to local search. Accordingly,
only solutions whose cost is at most (1 + maxtarget) times that of the best solution found
are submitted to local search, where maxtarget is a given parameter. Conversely, rejected
solutions are submitted, yet again, to perturbations. The initial maxtarget value is eventually
adjusted throughout the execution of the algorithm, being increased by 2% after 100 con-
secutive feasible solutions are generated without improving the best solution value so far
obtained. That toll should include solutions obtained at the constructive and the perturbation
phases of the algorithm. A similar scheme was previously used in [30].

3.6 Complete algorithm

We denote by cost(S) the cost of a solution S. The pseudo-code of the hybrid heuristic is
presented in Algorithm 3.

The best solution S* is initialized in line 1. The loop in lines 2 to 38 is performed until
the stopping criterion is attained. The GRASP component of the hybrid heuristic appears in
lines 3 to 22. If the graph is dense, a unique solution is built in line 4 using a constructive
heuristic and submitted to the local search phase in line 19. Otherwise, in case the graph
is sparse, at most ten trials are made in lines 6 to 18 to build an initial solution. The best
solution generated in the construction phase is initialized in line 7. The loop in lines 8 to 16
makes at most ten attempts to build a solution with at most |V |/3 artificial edges. Any of the
constructive heuristics may be used in line 9, before the acceptance criterion is applied in
lines 10 to 12. The best over the ten generated solutions (S”) is saved in lines 13 to 15.

The solution resulting from the construction phase (S) is saved in line 17. Local search is
applied to that solution in line 19. The best solution found so far (S*) is updated in lines 20
to 22.

@ Springer

374 J Glob Optim (2010) 46:363-381

Input: stopping criterion, number of perturbations, seed, maxtarget
Output: S*

1 Initialize $* < nil;

2 while stopping criterion not met do

3 if graph G is complete then

4 | S < Construction (seed);

5 end

6 else

7 S« nil;

8 for trials = 1, ..., 10 do

9 S <« Construction (seed);
10 if S has more than |V|/3 artificial edges then
11 ‘ Go to line 16;

12 end

13 if S improves upon S’ then
14 | &< S;

15 end

16 end

17 S <« 8

18 end

19 S <« Local search (S);
20 | if (S improves upon S*) then

21 | §* < S;

22 end

23 | while perturbation iterations limit not met do
24 S” « Perturbation (S);

25 if (cost(S") — cost(5%))/cost(S*) < maxtarget then
26 S’ < Local search (5);

27 if S’ improves upon S then

28 S <5

29 if S’ improves upon S* then

30 | §* <5

31 end

32 end

33 end

34 | end

35 | if S* not improved after 100 iterations then
36 ‘ maxtarget <— maxtarget + 0.02;

37 | end

38 end

39 return S*;

Algorithm 3: Pseudo-code of the hybrid heuristic.

The ILS phase of each iteration of the hybrid algorithm is performed in lines 23 to 37.
The loop in lines 23 to 34 implements a perturbation in line 24 to the current solution until
an iteration limit is attained. If the relative gap between the cost of the solution S’ thus
obtained and the best solution found so far §* is less than the filter value maxtarget, then
S’ is submitted in line 26 to local search. The resulting solution S’ is accepted as the new
incumbent solution in lines 27 and 28 if it is better than the current incumbent S. The best
solution so far obtained S* is replaced by S’ in lines 29 and 31 if the latter improves on the
former. Finally, the test in lines 35-37 increases the filter value maxtarget by 2% after 100
consecutive iterations without an improvement on the best solution value obtained so far.
As the output, the overall best solution found S* is returned by the hybrid algorithm in line
39.

@ Springer

J Glob Optim (2010) 46:363-381 375

4 Computational results

Computational experiments were performed on a Pentium IV machine with a 2.0 GHz clock
and 512MB of RAM memory. Three test sets of instances were used in the experiments.

The first set was used in [31]. The second set was taken from [11] and was also used in
[13]. Instances in the first and second sets were similarly generated. The first test set contains
instances that originate from either complete or sparse graphs and have associated diameter
values D that could irrespectively be odd or even. For the second test set, all instances origi-
nate from sparse graphs and have odd D diameter values associated with them. Instances in
this test set have shown to be difficult to solve to optimality, because DCMST formulations
tend to perform badly for the odd D case [13,14,31]. Optimal solutions for the instances in
the first and in the second sets were obtained, respectively, in [31] and [13]. They are used
here to evaluate the quality of the solutions found by the hybrid heuristic.

The third test set is formed by Euclidean Steiner problem instances taken from the OR-
Library [5]. Fifteen different instances are available for each value of n in {50, 70, 100, 250,
500, 1,000}. For each of these values, only the first five instances available were used in our
experiments. Such instances were previously used in [14,15,21,26], under different values of
D. They are defined over complete graphs and optimality of the corresponding best solutions
so far generated was not yet proved.

4.1 Constructive heuristics

We first compare the three constructive heuristics (OTT, OTT-M, and RGH). The following
metrics were used:

— For each heuristic, we denote its absolute rank the number of instances for which it found
the best overall result. If, for a given instance, two or more heuristics draw for best result,
they all count as best.

— Anaverage rank is calculated for every heuristic tested and every test set considered. For
a given instance, the heuristic that returns the best result is assigned one point, the one that
follows is assigned two points, and the one that returns the worst result is assigned three
points. Whenever the three heuristics draw for best result, they are all assigned one point.
Whenever two heuristics draw for second best, they are both assigned two points. For
every heuristic and every test set, the corresponding average rank is equal to the average
number of points assigned to the heuristic. The smaller the average rank, the better the
corresponding heuristic is.

— For each instance in the first and in the second test sets, the gap between its optimal
solution value and the upper bound provided by each heuristic tested are computed. An
average gap for the results obtained is then computed for each heuristic and every test
set. For the third test set, given that proven optimal solution values are unavailable, the
corresponding best solution values found in the literature are used instead.

In this experiment, each heuristic tested was applied 1,000 times to each instance. Compu-
tational results are shown in Tables 1, 2, and 3. The best results in each table are highlighted in
bold face. For all test sets, OTT-M performed consistently better than the other two heuristics.
It was indicated in [26] that RGH performs well for instances in the third test set, while OTT
performs poorly. We obtained similar results. However, in our experiments, OTT-M turned
out to perform even better than RGH.

The robustness of OTT-M must be emphasized. Indeed, in spite of the fact that the
characteristics of the three test sets are quite different from each other, OTT-M performed

@ Springer

376 J Glob Optim (2010) 46:363-381

Table 1 Results for the first test

set Heuristics Absolute rank Average rank Average gap (%)

OTT 6 2.6 18.26
RGH 5 2.2 6.60
OTT-M 39 12 1.47

Table 2 Results for the second Heuristics Absolute rank Average rank Average gap (%)

test set
OTT 3 2.33 42.75
RGH 0 2.46 38.92
OTT-M 10 1.21 17.38
geible 3 Results for the third test Heuristics Absolute rank Average rank Average gap (%)
OTT 0 3.00 267.22
RGH 13 1.57 17.42
OTT-M 17 1.43 17.28

uniformly well on all of them. Therefore, OTT-M is taken as the hybrid algorithm constructive
heuristic and is used in all experiments that follow.

4.2 Hybrid heuristic

The main objective of the experiments reported in this section was to evaluate the quality
of the solutions returned by the hybrid algorithm. We also attempted, whenever possible, to
compare results obtained by the hybrid heuristic with those reported in the literature.

The main parameter « of the GRASP phase of the algorithm is automatically set by the
reactive strategy presented in Sect.3.2. Different values for the filter value maxtarget were
considered in the ILS phase: 5, 10, 15, and 20%. We performed 500 iterations of the hybrid
algorithm on instances of the first, second, and third test sets for fine tuning the best maxtarget
value. Table4 shows the results obtained for these instances. The last four columns display,
for each instance, the cost of the best solution found under each different maxtarget value
used. The best results obtained are highlighted in bold face. The algorithm performed better
with maxtarget=0.15 for all but two of the instances in Table4. Therefore, this value was
selected to be used on the remaining experiments.

Five runs of the hybrid algorithm, each one under a different seed, were performed using
arun time limit as the stopping criterion. Time limits were set to allow at least 500 iterations
for all instances with the same number of vertices in the same test set. For the complete graph
instances in the first test set, a 0.1 s time limit was imposed on the 10 vertices instances. Cor-
responding figures for instances with 20, 40, and 60 vertices were set, respectively, to 0.40,
0.50, and 1s. For the sparse graph instances in the first set, 5, 10, and 20's were imposed as
the time limits for instances with, respectively, 20, 40, and 60 vertices. Time limits of 10 and
50s were imposed to instances of the second test set with, respectively, 40 and 60 vertices.
Finally, time limits of 10, 50, 200, 1,500, 3,000, and 4,500s were imposed to instances of
the third test set with, respectively, 50, 70, 100, 250, 500, and 1,000 vertices.

@ Springer

J Glob Optim (2010) 46:363-381 371

Table 4 Calibration of the filter parameter maxtarget

Maxtarget %

Test set \4 |E| D Id. 5 10 15 20
First 25 300 4 500 500 500 500
20 50 4 442 442 442 442
40 100 4 755 755 755 755
60 150 5 990 983 989 989
Second 60 600 4 128 127 124 124
60 600 5 967 967 967 967
60 600 7 158 156 155 155
60 600 7 804 804 800 803
Third 70 2,415 7 1 7.23 7.24 7.23 7.23
70 2,415 7 2 7.09 7.10 7.08 7.08
70 2,415 7 5 7.26 7.26 7.25 728
100 4,950 10 1 7.83 7.89 7.89 7.90
100 4,950 10 3 8.01 8.01 8.00 8.00
100 4,950 10 5 821 8.24 821 8.25
250 31,125 15 3 12.17 12.21 12.13 12.18
250 31,125 15 4 12.79 12.74 12.70 12.72
250 31,125 15 5 12.53 12.62 12.44 12.44

Computational results for the experiment described above are presented in Tables 5, 6, and
7. Each table line corresponds to a different instance. Number of vertices, number of edges,
and diameter values D are given for each instance. Corresponding optimal values cost (S*)
are indicated in Tables 5 and 6 for the instances of the first and in the second test sets. We also
indicate in these tables the least time in seconds quoted in the literature to solve each of these
instances to proven optimality. We notice that the first and second test sets have been used
in [12,31] exclusively to test and compare different problem formulations. They have not
been used before as a test bed for the evaluation of DCMST heuristics. For each instance in
the third test set, the corresponding best solution value known cost(S’) is taken from Gruber
and Raidl [15] (VNS heuristic) and Raidl and Julstrom [21,26] (evolutionary algorithm) and
is given on Table7 (recall that proven optimal solution values for these instances are still
unknown). For this table, a tag is used to match each instance with those in the OR-Library.
The last columns in Tables5, 6, and 7 give, for each instance, the value of the best solution
obtained over five runs, the relative gap between the latter and the optimal solution value
(only for the instances in the first and second test sets), the average value of the solutions
obtained over five runs, and the time limit in seconds used as the stopping criterion.

The results in Table 5 show that the hybrid algorithm managed to find optimal solutions for
41 out of the 42 instances in the first test set. The optimum was not found only for the instance
with |V| = 60, |E| = 150, and D = 5. The algorithm found optimal solutions for 39 out of
these 42 instances in all five runs (i.e., except for two instances: |V | = 20, |E| = 190, and
D =10; |V| =40, |[E| = 100, and D = 7; |V| = 60, |[E| = 150, and D = 5;). The CPU
times quoted in the literature to attain proven optimal solutions for these instances using the
same computational resources are much higher than those quoted for the hybrid heuristic,
see [31].

@ Springer

378 J Glob Optim (2010) 46:363-381

Table 5 Results for the instances of the first test set

V| |E| D Cost (§%) Seconds Best Gap (%) Average Seconds
10 45 4 252 0.77 252 0.00 252.00 0.1
5 230 0.13 230 0.00 230.00
6 221 0.08 221 0.00 221.00
7 203 0.14 203 0.00 203.00
8 232 0.05 232 0.00 232.00
9 254 0.05 254 0.00 254.00
10 254 0.06 254 0.00 254.00
15 105 4 346 24.17 346 0.00 346.00 0.4
5 331 22.27 331 0.00 331.00
6 314 32.53 314 0.00 314.00
7 303 19.23 303 0.00 303.00
8 240 45.64 240 0.00 240.00
9 290 7.80 290 0.00 290.00
10 286 8.95 286 0.00 286.00
20 190 4 349 1,888.02 349 0.00 349.00 0.5
5 414 216.36 414 0.00 414.00
6 298 593.91 298 0.00 298.00
7 333 5.05 333 0.00 333.00
8 331 1,338.41 331 0.00 331.00
9 327 91.33 327 0.00 327.00
10 324 172.81 324 0.00 324.40
25 300 4 500 158,836.45 500 0.00 500.00 1.0
5 429 51,551.8 429 0.00 429.00
6 378 5,194.90 378 0.00 378.00
7 408 16,617.61 408 0.00 408.00
8 369 30,080.28 369 0.00 369.00
9 336 9,172.04 336 0.00 336.00
10 379 459.88 379 0.00 379.00
20 50 4 442 0.64 442 0.00 442.00 5.0
5 381 5.58 381 0.00 381.00
6 329 10.81 329 0.00 329.00
7 362 2.23 362 0.00 362.00
8 366 29.93 366 0.00 366.00
9 362 26.16 362 0.00 362.00
10 359 74.15 359 0.00 359.00
40 100 4 755 54.14 755 0.00 755.00 10.0
5 729 20.67 729 0.00 729.00
6 599 909.95 599 0.00 599.00
7 667 207.64 667 0.00 667.40
8 580 161,592.78 580 0.00 580.00
9 552 4,584.19 552 0.00 552.00
60 150 5 968 11, 644.75 983 1.55 990.60 20.0

Table 6 shows that the best solutions found over five runs of the hybrid heuristic for the
instances in the second test set are at most at 1.4% from their corresponding optimal solution
values. Furthermore, optimal solutions were found for eight out of the 12 instances in the set.

Finally, bold face highlighted results in Table 7 indicate, for 15 out of the 30 instances in
the third test set, that the hybrid algorithm either matched or else improved upon correspond-
ing best results taken from the literature. However, the performance of the hybrid algorithm
cannot be directly compared with those algorithms that produced the best solutions known to
date, since different computational resources were used in the experiments. Nevertheless, we
notice that the hybrid heuristic returned best solution values known for 50% of the instances

@ Springer

J Glob Optim (2010) 46:363-381 379
Table 6 Results for the instances of the second test set
V| |E| D Cost (§%) Seconds Best Gap (%) Average Seconds
40 400 5 612 224.00 612 0.00 613.60 10.0
7 527 962.00 527 0.00 530.20
9 495 31,349.00 495 0.00 495.40
5 253 1,719.00 253 0.00 253.00
7 171 92.00 171 0.00 171.00
9 154 2.93 154 0.00 154.00
60 600 5 965 1, 600.00 965 0.00 966.60 50.0
7 789 2,417.00 796 0.89 800.40
9 738 51,841.00 741 0.41 744.40
5 256 13,426.00 257 0.39 257.80
7 150 3,062.00 152 1.33 155.00
9 124 3,768.21 124 0.00 126.00
Table 7 Results for the instances of the third test set
V] IEl D Tag Cost(S") Best Average Seconds
50 1,225 5 1 7.60 7.60 7.60 10.0
2 7.68 7.61 7.62
3 7.24 7.24 7.24
4 6.59 6.59 6.59
5 7.32 7.25 7.25
70 2,415 7 1 7.23 7.23 7.23 50.0
2 7.12 7.08 7.08
3 6.99 6.98 6.99
4 7.52 7.50 7.51
5 7.27 7.25 7.25
100 4,950 10 1 7.76 7.83 7.88 200.0
2 7.85 7.94 7.96
3 7.90 7.98 8.00
4 7.98 8.04 8.08
5 8.17 8.21 8.22
250 31,125 15 1 12.30 12.45 12.53 1500.0
2 12.02 12.31 12.36
3 12.04 12.13 12.18
4 12.51 12.70 12.75
5 12.28 12.44 12.51
500 124,750 20 1 16.97 17.20 17.25 3000.0
2 16.88 17.06 17.25
3 16.98 17.22 17.28
4 16.99 17.24 17.31
5 16.57 16.94 17.02

@ Springer

380 J Glob Optim (2010) 46:363-381

Table 7 continued

4] IEI D Tag Cost(S") Best Average Seconds
1,000 499,500 25 1 25.18 24.66 24.83 4500.0
2 25.02 24.46 24.77
3 24.82 24.32 24.56
4 25.29 24.61 24.71
5 25.03 24.27 24.50

in the third test set. This is particularly interesting if one considers that those are among the
largest and hardest instances, for which optimality is not proven.

5 Concluding remarks

We developed new heuristics for the diameter constrained minimum spanning tree problem.
The OTT-M semi-greedy heuristic is an extension of the OTT constructive heuristic which
makes use of a restricted candidate list to select the edge that will be placed into the current
partial solution at each iteration. It also employs a reactive strategy for parameter tuning.
OTT-M performed better than OTT and RGH in the computational experiments carried out,
finding solutions systematically better for the instances in three test sets taken from the
literature.

A hybrid heuristic combining the main principles of the GRASP and ILS metaheuristics
was also proposed to solve DCMST. This algorithm obtained solutions within 2% of opti-
mality for all instances in the first two test sets considered in this study, at a small fraction
of the time required by exact algorithms to obtain proven optimal solutions. For instances
originating from the OR-Library, proven optimal solutions have not yet been obtained. How-
ever, our hybrid algorithm improved upon or matched the best results in the literature for
15 out of 30 problems. The hybrid heuristic is very robust, since it performed consistently
well and improved the best solutions in the literature to date for three fairly different test
sets. We notice that the VNS algorithm proposed in [14] was tested on some OR-Library
instances, but not on those of the first and second test sets (for which optimal solution values
are known).

References

1. Abdalla, A.M.: Computing a diameter-constrained minimum spanning tree. PhD thesis, College of Engi-
neering and Computing Science, University of Central Florida, Orlando (2001)

2. Achuthan, N.R., Caccetta, L., Caccetta, P.A., Geelen, J.F.: Algorithms for the minimum weight spanning
tree with bounded diameter problem. In: Phua, K.H., Wand, C.M., Yeong, W.Y., Leong, T.Y., Loh, H.T.,
Tan, K.C., Chou, E.S. (eds.) Optimization Techniques and Applications, vol. 1, pp. 297-304. World
Scientific, Singapore (1992)

3. Achuthan, N.R., Caccetta, L., Caccetta, P.A., Geelen, J.F.: Computational methods for the diameter
restricted minimum weight spanning tree problem. Australas. J. Comb. 10, 51-71 (1994)

4. Bala, K., Petropoulos, K., Stern, E.: Multicasting in a linear lightwave network. In: Proceedings of the
IEEE INFOCOM’93 Conference on Computer Communications, vol. 3, pp. 31350-31358. Sdo Francisco
(1993)

5. Beasley, E.J.: OR-Library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41, 1069—
1072 (1990)

@ Springer

J Glob Optim (2010) 46:363-381 381

17.
18.

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Bookstein, A., Klein, S.T.: Compression of correlated bitvectors. Inf. Syst. 16, 110-118 (2001)

Deo, N., Abdalla, A.: Computing a diameter-constrained minimum spanning tree in parallel. Lect. Notes
Comput. Sci. 1767, 17-31 (2000)

Duarte, A.R., Ribeiro, C.C., Urrutia, S., Haeusler, E.H.: Referee assignment in sports leagues. In: Practice
and Theory of Automated Timetabling VI, vol. 3867 of Lecture Notes in Computer Science, pp. 158—173.
Springer (2007)

Feo, T.A., Resende, M.G.C.: A probabilistic heuristic for a computationally difficult set covering prob-
lem. Oper. Res. Lett. 8, 67-71 (1989)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Complete-
ness. WH Freeman, New York (1979)

. Gouveia, L., Magnanti, T.L.: Modelling and Solving the Diameter-Constrained Minimum Spanning Tree

Problem, Technical Report. Departamento de Estatistica e Investigacdo Operational, Faculdade de Cién-
cias, Lisboa (2000)

Gouveia, L., Magnanti, T.L.: Network flow models for designing diameter-constrained minimum-span-
ning and steiner trees. Networks 41, 159-173 (2003)

Gouveia, L., Magnanti, T.L., Requejo, C.: A 2-path approach for odd-diameter-constrained minimum
spanning and steiner trees. Networks 44, 254-265 (2004)

Gruber, M., Raidl, G.R.: A new 0-1 ILP approach for the bounded diameter minimum spanning tree
problem. In: Gouveia, L., Mourdo, C. (eds.) Proceedings of the 2nd International Network Optimization
Conference, vol. 1, pp. 178-185, Lisbon (2005)

Gruber, M., Raidl, G.R.: Variable neighborhood search for the bounded diameter minimum spanning tree
problem. In: Hansen, P., Mladenovic, N., Pérez, J.A.M., Batista, B.M., MorenoVega, J.M. (eds.) (2005)
Proceedings of the 18th Mini Euro Conference on Variable Neighborhood Search, pp. 1-11. Tenerife
Guedes, A.C.B., Ribeiro, C.C.: A hybrid heuristic for minimizing weighted carry-over effects in round
robin tournaments (2009) (Submitted)

Handler, G.Y.: Minimax location of a facility in an undirected graph. Transp. Sci. 7, 287-293 (1978)
Hansen, P., Mladenovi¢, N.: Variable neighborhood search: principles and applications. Euro. J. Oper.
Res. 130, 449-467 (2001)

Hansen, P., Mladenovi¢, N.: Developments of variable neighborhood search. In: Ribeiro, C.C., Hansen,
P. Essays and Surveys in Metaheuristics, pp. 415-439. Kluwer, Boston (2002)

Hart, J.P., Shogan, A.W.: Semi-greedy heuristics: An empirical study. Oper. Res. Lett. 6, 107-114 (1987)
Julstrom, B., Raidl, G.R.: A permutation-coded evolutionary algorithm for the bounded-diameter min-
imum spanning tree problem. In: Barry, A., Rothlauf, F., Thierens, D., et al. (eds.) The Genetic and
Evolutionary Computation Conference’s Workshops Proceedings, Workshop on Analysis and Design of
Representations, pp. 2—7. Chicago (2003)

Julstrom, B. A.: Encoding bounded-diameter minimum spanning trees with permutations and with random
keys. Lect. Notes Comput. Sci. 3102, 1272—1281 (2004)

Lourenco, H.R., Martin, O.C., Stutzle, T.: Iterated local search. In: Glover, F., Kochenberger, G. Handbook
of Metaheuristics, pp. 321-353. Kluwer, Boston (2002)

Prais, M., Ribeiro, C.C.: Reactive GRASP: an application to a matrix decomposition problem in TDMA
traffic assignment. INFORMS J. Comput. 12, 164—176 (2000)

Prim, R.C.: Shortest connection networks and some generalizations. Bell Syst. Tech. J. 36, 1389—
1401 (1957)

Raidl, G.R., Julstrom, B.A. : Greedy heuristics and an evolutionary algorithm for the bounded-diameter
minimum spanning tree problem. In: Proceedings of the 18th ACM Symposium on Applied Computing,
pp. 747-752. Melbourne (USA) (2003)

Raymond, K.: A tree-based algorithm for distributed mutual exclusion. ACM Trans. Comput. 7, 61—
77 (1989)

Requejo, C.: Modelos para o problema da drvore geradora de suporte com restricdo de didmetro: caso do
didmetro impar. PhD thesis, Universidade de Lisboa Faculdade de Ciéncias, Lisboa (2003)

Resende, M.G.C., Ribeiro, C.C.: Greedy randomized adaptive search procedures. In: Glover, F., Kochen-
berger, G. (eds,) Handbook of Metaheuristics, pp. 219-249. Kluwer, Boston (2003)

Ribeiro, C.C., Urrutia, S.: Heuristics for the mirrored traveling tournament problem. Euro. J. Oper.
Res. 179, 775-787 (2007)

Santos, A.C., Lucena, A., Ribeiro, C.C.: Solving diameter constrained minimum spanning tree problem
in dense graphs. Lect. Notes Comput. Sci. 3059, 458-467 (2004)

@ Springer

	A hybrid heuristic for the diameter constrained minimum spanning tree problem
	Abstract
	1 Introduction
	2 GRASP and ILS
	3 A hybrid DCMST heuristic
	3.1 Constructive heuristics
	3.2 Semi-greedy constructive heuristic OTT-M
	3.3 Neighborhoods
	3.4 Perturbations
	3.5 Filters
	3.6 Complete algorithm

	4 Computational results
	4.1 Constructive heuristics
	4.2 Hybrid heuristic

	5 Concluding remarks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

